Flame test

The substance is moistened with conc. HCl, and the mixture, on a platinum wire is shown in the edge of the non-luminous Bunsen flame.

Flame Colour	Inference
Golden yellow	Na
Lilac (violet)	K
Brick – red	Ca
Crimson	Sr
Apple green	Ва
Bluish green	Cu
Green	Borates
Livid blue	Pb, Sb, Bi

Dil. Acid group

To about 5 mg of the substance add about 0.5 ml of dil. HCl. Observe the reaction in the cold and then heat it on a water bath.

Observation	Inference
1. Brisk effervesce, the gas turns lime/Baryta water milky	Carbonate is
	Present.
2. Colourless gas (SO_2) with the smell of burning sulphur .The gas turns	Sulphite is
a filter paper dipped in acidified potassium dichromate green.	Present.
3. Colourless gas with the odour of rotten eggs (H ₂ S) is evolved. The gas	Sulphide is
turns lead acetate paper black and	Present.
cadmium acetate paper yellow.	
4. Vineger smell. Red coloration/ppt with neutral ferric chloride.	Acetate is
5. Mix 20 mg of the substance with 1ml of ethyl alcohol and 5 drops of con.	Present.
$\rm H_2SO_4$, Heat in a hot water rack for 10 minutes, and pour into 2 ml of $\rm Na_2CO_3$	
solution> Fruity odour	

Conc. Acid group

Addition of Conc. H ₂SO₄ + MnO₂, heat

Observation	Inference
1. Greenish yellow pungent smelling gas (HCl) which fumes in	Chloride is
moist air. Dense white fumes (NH ₄ Cl) with a drop of ammonia	Present.
on a glass rod	
2. Reddish brown fumes (Br ₂) are evolved.	Bromide is
	Present.
3. violet vapours (I ₂) are evolved.	lodide is
	Present.
4. On warming, brown gas (NO ₂)With characteristic smell is	Nitrate is
evolved. The brown colour is deepened by the addition of	Present.
copper turnings.	

Silver nitrate group

Add silver nitrate to Neutralized sodium carbonate extract

1	A curdy white precipitate (AgCl), insoluble in dil.HNO _{3,} but soluble in ammonia solution.	Chloride is confirmed.
2	A pale yellow precipitate (AgBr), insoluble in dil. HNO ₃ , but sparingly soluble in ammonia solution.	Bromide is confirmed.
3	A yellow precipitate, insoluble in both dil. HNO ₃ and ammonium solution.	Iodide is confirmed.

Test for Chloride Chromyl chloride test

Test for Bromide and Iodide:

To the substance in dil. HNO_3 add drops of $KMnO_4$ solution until the pink colour persists. Add CCl_4 and shake.

Reddish brown colouration	Bromide is
of CCl ₄ layer	confirmed.
Violet colouration of CCl ₄	lodide is
layer.	confirmed.

Nitrate: Brown ring test

The sodium carbonate extract is acidified with dil. H₂SO₄.

An equal volume of freshly prepared FeSO₄ solution is added.

Holding the test-tube in an inclined position con. H₂SO₄ drops are added without shaking.

A brown ring is formed at	Nitrate is
the junction of the two	confirmed.
layers	

Sulphate : BaCl₂ test

To the sodium carbonate extract add dil. HCl till no more CO_2 is evolved. Add 1-2 ml of dil. HCl and $BaCl_2$ solution.

A white precipitate insoluble in dil. HCl is formed | Sulphate is Confirmed

Borate: Flame Test

The substance is mixed with calcium flouride and con. H₂SO₄ to get a paste. Hold some of the paste on a platinum loop, just outside the base of the Bunsen flame.

A green flame is formed Borate is confirmed.

Phosphate: Amm. Molybdate test

To the sodium carbonate extract add dil. HNO $_3$ ill no more CO $_2$ is evolved. Add 1–2 ml of amm. Molybdate. Warm.

Yellow ppt

Phosphate is confirmed.

Analysis of Cations

Preparation of the original solution

A small quantity of the substance (15 mg) is treated with the following solvents in the given order.

- Distilled water
- •dil.HCl,
- •dil.HNO₃
- •con.HCl
- •aqua regia (3 vol. con. HCl + 1 vol. con. HNO₃).
- Observe the solubility in the cold, then heat to boiling. If any gases are formed, boil them off. Dissolve 50 to 100 mg of the substance in the suitable solvent and prepare the solution. This solution is often referred to as the original solution.

Separation of group 1 cations: The Residue-1 is washed with cold water containing a few drops of dil. HCl, and centrifuged. To the residue, add 1 ml of hot water. Heat to boiling for 1-2 minutes. Centrifuge while hot. Transfer the centrifugate quickly to another test tube.

Residue (Residue 1.1): White: May contain Hg₂Cl₂ and AgCl. Wash with boiling water to remove the undissolved PbCl₂.Treat the residue with 0.5 ml warm dilute NH₃ solution. Stir. Centrifuge.

Residue (1.2), Black:Hg + | Centrifugate (1.2): May $Hg (NH_2) Cl. Hg_2^{2+}$ present. Dissolve the ppt. in aqua-regia, heat, divide into two parts.

- **1.** Add stannous chloride White grayish ppt. Hg_2^{2+} is confirmed.
- 2. Add drops of KI solution-- Red or Yellow ppt. Hg.²⁺ is confirmed.

contain Ag (NH₃)₂Cl. Divide into 2 parts.

- **1.** Add dil.HNO₃. White ppt. (AgCl) - Ag is confirmed.
- 2. Add KI solution- Yellow ppt. (AgI) – Ag is confirmed.

Centrifugate (1.1): May contain PbCl₂. Divide into 3 parts.

- **1.** Cool under tap White ppt. reappears. - Pb²⁺ is confirmed.
- **2.** Add 2 drops of potassium chromate - Yellow ppt. (PbCrO₄).- Pb²⁺ is confirmed.
- **3.** Add 2 drops of KI solution –Yellow ppt. (Pbl₂).Boil the ppt. with water and a few drops of acetic acid and cool. The ppt. dissolves on heating and reappears as golden spangles on cooling – Pb²⁺ is confirmed.

Cations/ Groups / Group reagents

Group	Group reagent	Cations	Ppt formed
l	Dil. HCl	Pb ²⁺ , Ag ¹⁺ , Hg ¹⁺	Chlorides
II	Dil. HCl + H S	Pb ²⁺ , Bi ³⁺ , Cd ²⁺ , Cu ²⁺ , Sn ²⁺ , As ³⁺ , Sb ³⁺	Sulphides
III	NH Cl + NH OH	Fe ³⁺ , Al ³⁺ , Cr ³⁺	Hydroxides
IV	NH Cl + NH OH + H S	Co ²⁺ , Ni ²⁺ , Zn ²⁺ , Mn ²⁺	Sulphides
V	NH CI + NH OH + NH CO	Ca ²⁺ , Ba ²⁺ , Sr ²⁺	Carbonates
VI	No group reagent	Mg ²⁺ , NH ⁺ , K ⁺	

Separation of Cations into Groups

To 1 ml of the original solution in a centrifuge tube, dil. HCl is added until precipitation, if any, is complete Centrifuge.

White,

may

PbCl₂,

 Hg_2CI_2

or

AgCl.

Residue Centrifugate-1 Heat on a water bath; pass H₂S gas until the precipitation is complete. Centrifuge.

Residue-2

May

contain Contain

CuS.

Brown:Bi₂S₃.

Yellow:CdS,

Group- Sb₂S₃,SnS₂

Group - 2

present present

Centrifugate-2: (Eliminate the interfering anions if necessary.Boil off H₂S Add 3 drops of con.HNO₃ and boil.Add 100 mg solid ammonium chloride, heat on a Black: HgS, PbS, water bath. Add ammonia solution till alkaline, and add 2 drops excess. Warm. Stir. Centrifuge.

Residue-3:

May contain

Reddish-brown:Fe(OH)₃ H₂S to complete

Green:Cr(OH)₃

White:Al(OH)₃

Group 3

Present

Centrifugate-3: Add 2 drops of NH₃ solution. Warm. Pass precipitation. Centrifuge.

Wash the residue

Separation of Cations into Groups Contd....

Residue-4:

May contain

Black:

CoS, NiS

Pink: MnS,

White:

ZnS

Group 4 present

Residue –5

May contain

White:

BaCO₃,SrCO₃,

CaCO₃

Group 5 present

Centrifugate-4: Place in a china dish. Acidify with dil. Acetic acid. Evaporate to a pasty mass. Add 5 drops of

con.HNO₃.Heat to dryness (till fumes stop)⁷ Dissolve the

residue in 5 drops of dil. HCl and 1 ml water. Add (in test-

tube) 5 drops of 20% NH₄Cl. Add NH₄OH with shaking till

alkaline. Add excess of 10% (NH₄)₂CO₃ soln. Warm at

60°C. Centrifuge. Wash.

Centrifugate-5:

Evaporate to a pasty mass, add 0.5 ml

50-

con.HNO₃.

Heat to dryness

White residue-

Group-6 present